

FLSmidth Filtration for Tailings Management

Todd Wisdom +1-801-230-8409

Wet Tailings Solutions

Lisheen mine tailings pond (Vedanta) in Ireland

River and sea disposal Submarine Tailings Disposal (STD) is perhaps the most common offshore disposal technique and involves the deep water discharge of tailings to the sea

The L-L embankment of the Valley impoundment The Highland Valley Copper Mine is located just outside the town of Kamloops in British Columbia, Canada. The mine produces copper (435,000 tones in 2003) and molybdenum (6405 tones in 2003) concentrates. The tailings pumped to the Valley Impoundment in 2003 were 48.5 million tons.

The information contained or referenced in this presentation is confidential and proprietary to FLSmidth and is protected by copyright or trade secret law

Facts about Tailings and the handling processes

Facts about Tailings and the handling processes

- Depending on the type of mineral the tailings can represent anywhere from 30% to 99% of the solids mined
- Most minerals tailings currently are handled with wet tailings process and stored in tailings impoundments
- These need careful construction, maintenance and monitoring, and also suffer from high evaporation/loss rates

he information contained or referenced in this presentation is confidential and proprietary to ELSmidth and is protected by copyright or trade secret la

- Several drivers towards dry tailings, including:
 - lack and cost of water
 - Suitable tailing pond lands,
 - reclamation responsibilities,
 - environmental legislation and,
 - wet tailings storage risks

Dry Stacking Drivers

One Source

Industry	Recycling	Tailings land cost	Environmental Legislation	Risk mitigation
Dry tailings		Tailings land availability	Environmental impact	Long term liabilities
experiences	Cost of water	Mining permits	Political pressure	Tailings accidents
Available dry technology	Lack of water	Mine locations Desert Very Cold	Social acceptance	Wet tailings
Lower Ore Grades More material Mined More Material Processes More Tailings				
High demand -High metal prices				

Tailings Solutions Options

Dry stacking-La Coipa Mine (Anglo American, Chile)

Surface paste disposal at Myra Falls Mine, Vancouver Island, Canada

One Source

Surface thickened Thickened discharge at Kidd Creek, ON, Canada (left) and at Mt Keith, Western Australia (right)

Fresh paste depositing over a desiccated layer (left) and one of the risers at the Bulyanhulu Mine (Barrick), Tanzania (Courtesy Golder Associates)

The information contained or re

this presentation is confidential and proprietary to FLSmidth and is protected by copyright or trade secret law

Wet or Dry Tailings?

The information contained or referenced in this presentation is confidential and proprietary to FLSmidth and is protected by copyright or trade secret laws

Slurry % solids	H ₂ O vol. / mt Tailings (m ³ /mt)	Description
20	4.0	Ore processing
30	2.3	Plant tailings
50	1.0	Thickened slurry
60	0.67	High Density slurry
75	0.33	Thickened to paste
82	0.21	Vacuum filter
88	0.13	Pressure filter

COURTESY MINE PASTE ENGINEERING LTD.

Slurry Material Continuum

COURTESY MINE PASTE ENGINEERING LTD.

Facts about Tailings and the handling processes

- The dry tailings process will increase with new operations, especially those situated in deserts environments and areas where tailings land availability is a constraining factor
- Solids content in thickened tailings is between 40% and 70%.
- Dry cake tailings solutions can increase the solids content to as high as 85%, which represents substantial water savings for the mine
- Dry tailings are also easier to reclaim and have lower environmental impact risks during operation and after the closure
- Dry Tailings provide the lowest risk profile with respect to failures and the costs associated with cleaning up those failures.

Tailings accidents

The majority of historical tailings related incidents have been influenced by poor day to day management.

Accident in Stava Trento Italy, 1985 Cycloned sand tailings Along its path, the mud killed 268 people and completely destroyed 3 hotels, 53 homes, and six industrial buildings; 8 bridges were demolished and 9 buildings were seriously damaged. A thick layer of mud measuring between 20 and 40 cm in thickness covered an overall 435,000 square m over 4.2 km. According to the subsequent inquiries, the collapse was caused by the chronic instability of the dams, especially in the upper one, which were below the minimum factor of safety required to avoid collapses.

One Source

Cerro Negro near Santiago Chile 2003 Wet tailings

Marriespruit South Africa 1994 Wet tailings

Aerial Image Of Kingston Ash Slide 12/23/08

The TVA Kingston Fossil Plant coal in the USA fly ash slurry spill occurred just before 1 a.m. on Monday December 22, 2008, when an ash dike ruptured at an 84-acre (0.34 km2) solid waste containment area at the Tennessee Valley Authority's Kingston Fossil Plant in Roane County, Tennessee, USA. 1.1 billion gallons (4.2 million m³) of coal fly ash slurry was released.

confidential and proprietary to El Smidth and is protected by copyright or trade secret laws

Tailings accidents

The Ajka Timfoldgyar Alumina Plant Tailings Dam Accident October 4th 2010 in Hungary. Hungary's government estimated that it would cost more than US\$51 million and take at least a year to clean up the damage. Hungarian state news service MTI estimated at the time of the accident that Hungary stores about 50 million tons of the red tailings with about 800,000 tons generated annually.

World Market for Dry Tailings Expected high global growth

Dry Tailings Global Market Outlook & FLSmidth Strategy

FLSmidth's Tailings Strategy

2011

✓ One of the leading suppliers of tailings equipment and bundled products.

Near Future

✓ The leading supplier of dry tailings islands solutions.

Long Term

✓ The Leading supplier of dry tailings management solutions

Dry Tailings

- Dry, desert areas, lack of water.
 Southern
 Hemisphere in specific
- Water issues and TSF type guided by strong environmental legislation
- Very cold climates, freezing temperatures, permafrost

The information contained or referenced in this presentation is confidential and proprietary to FLSmidth and is protected by copyright or trade secret laws

FLS Dry Tailings Solutions

Largest Minerals Filter Press for 100 000 tons/day operation

FLS Values for Tailings Solutions

- Sustainable solutions
 - Dry tailings solutions
 - Recycling of water
 - Environmentally sound
 - Lower cost
- Peace of mind

One Source

- Our solutions combine technical and operational reliability
 - Reliability of operations
 - Proven results
 - Proven technology
 - Experience
 - References
 - Process knowledge
 - One source for solutions or individual equipment
 - Tailings islands
 - Customer Service
 - Maintenance contracts

- Low TCO
 - Our approach is holistic concentrating in effective tailings solution for the life of the mine
 - Cost of water
 - Our industry presence, customer contacts and large reference give basis for continuous innovation
 - Productivity of the equipment
 - Leading technical solutions
 - Parts, spares, wear materials
 - Automation and monitoring
 - New methods
 - System integrations
- Customized solutions
 - We provide individualized solutions which meets the specific customer tailings management requirements
 - Wet or Dry
 - Different minerals and materials
 - Different conditions Different production requirements

FLSmidth Filtration Key filter lines

Vacuum Filters

> Horizontal

- Belt Filters and Pan Filters up to 250m²
- High Performance and Flexible

> Vertical

One Source

- Drum Filters and Disc Filters up to 310m²
- > Simple, Robust and Reliable

Pressure Filters

Horizontal

- Filter Press up to 24m² volume, 960m² area
- Simple, Robust and Reliable

> Vertical

- Pheumapress up to 100m² area
- High Performance and Flexible

Lab and Pilot Testing

One Source

Bench-Scale and/or Pilot Testing are used to determine material filtration characteristics For equipment proper selection and sizing.

renced in this presentation is confidential and proprietary to FLSmidth and is protected by copyright or trade secret laws

AFP Pilot Unit

FLSmidth Pilot Filter Press 500mm Membrane Mixed-Pack Plate Stack

Tailings Dewatering Options Tested

One Source

0.81

5.38 0.00

Options for Tailings Dewatering

FILTRATION CYCLE TIMES		FILTRATION CYCLE TIMES
(Minutes)		(Minutes)
Fill Empty Filter	1.48	Fill Empty Filter
Filtration to Solids Consolidation	5.51	Filtration to Solids Consolidation
Wash Solids	0.00	Wash Solids
Inflate + Hold + Deflate Membranes	0.00	Inflate + Hold + Deflate Membranes
Cake Blow	0.25	Cake Blow
Core Wash/Blow	0.50	Core Wash/Blow
Shake Cloth	0.50	Shake Cloth
Filter Cloth Wash & Purge	0.50	Filter Cloth Wash & Purge
Open & Close Filter	1.89	Open & Close Filter
Total Cycle Time	10.63	Total Cycle Tir

+ Hold + Deflate Membranes	0.00
llow	0.25
/ash/Blow	0.50
Cloth	0.50
loth Wash & Purge	0.50
Close Filter	1.50
Total Cycle Time	9.44

Fine Tails – Cyclone Overflow 26% Cake P80 - 30.5

One Source

lotal lails 18 % Cake P80 - 204

Most Effective Solution – Filter Cake

Filter Press Technology Produce Consistent Dry Cake w/o the Need for Expensive Polymers

Refuse Belt

Coal Refuse Filter Cake

Full Range of Filter Press Products

Low Cost Standard Products

One Source

 Filter Presses from small to large / Fully and Fully Automatic to Fully Manual

Key Elements for Cost Effective Filter Design

- TCO must be competitive with traditional solutions
 - High Initial Costs > \$100,000,000 USD
 - Low Operating Costs > \$0.75 USD/ton
- Minimize Filtration Capital Costs
 - Minimize Cycle time
 - Maximum Filter Size
- Minimize Filtration Operational Costs
 - Minimize energy usage
 - Eliminate wasted energy
 - Minimize Cloth Consumption
 - Use cost effective design

One Source

For High-Volume Production Large-Scale Filters with 2M x 2M Plates

One Source

> 100 Bar Cloth Washer

Single Plate Indexing – Discharge = 10 min.

Shriver[®] Filter Press

Typical Tailings Cycle Time

One Source

Minimize Cycle Time Eliminate Membranes

Bottom Feed Recessed Chamber

Top Feed Membrane

AFP IV[™] FILTER Filtration Pressure

- Slurry Pumps Are Used To Create The Filtration Flow and Pressure
- VFD control ensures pumps operate to required filtration curve.

Competition Upper Feed Eye

One Source

- Chambers fill in series, not in parallel
- Cakes are more consolidated at the bottom of the plate than at the top of the plate
- Membranes are required to consolidate into even cakes

The information contained or referenced in this presentation is confidential and proprietary to FLSmidth and is protected by copyright or trade secret laws

High density

Low density

PLATE DESIGN

Membrane Plate Section

One Source

Filter Plates Comparison

Top Feed

- Membranes required
- Plate removal not required for cloth change
- Plate life limited
- Cost up to US\$ 20,000 each
- Membrane accessories needed higher Opex
- Longer cycles for membrane squeeze means less production per cycle and more filter press area required

Bottom Feed – FLS Technology

- No membranes required
- Remove plate for cloth change Not significant
- Plate life extended
- Cost US\$2,000 each

The information contained or referenced in this presentation is confidential and proprietary to FLSmidth and is protected by copyright or trade secret laws

Minimize Cycle Time Discharges In < 1 Min.

AFP IV[™] Automatic Filter Press

The information contained or referenced in this presentation is confidential and proprietary to FLSmidth and is protected by copyright or trade secret laws.

Cross Head System Discharges 120 Chambers in < 1 Min.

Optimized Design

The Heart of Filtered Tailings AFP IV[™] Automatic Filter Press

Filter and Drip Tray on Assembly Floor

AFP IV[™] Automatic Filter Press

One Source

Automatic Filter Press AFP Operation (without Cake Wash)

Automatic Filter Press Core Blowing to Clear Feed Eye

For High-Volume Production Large-Scale Filters with 2M x 2M Plates

Filter Specifications:

- 9,015 ft² (838 M²)
- 475 ft³ (13.5 M³)
- 225 psi (16 bar)
- Dry Wgt: 165 tons

Typical Open Discharge Arrangement

Filtrate is Discharged Directly to the Drip Tray or Launder

The information contained or referenced in this presentation is confidential and proprietary to FLSmidth and is protected by copyright or trade secret laws.

Flood Wash Arrangement

One Source

Shaker System

FLSmidth Automation Controls w/Local PLC and DCS Connectivity

One Source

Copper Tailings Filtration

Largest Operating Minerals Filter Press

- (14) (12 operating 2 spare) 2x2 AFP Filters
- ▶ 120 Chambers
- Capable of 100,000 mt per day
 - > 8,300 tpd/filter
- ➢ 65 % feed solids

One Source

16 % cake moisture

Rosemont Copper Tailings Filtration Total Tailings Dewatering

5049 - 8

Filter Press with Surge Tank

One Source

Normally Used with Conventional Thickener Technology

Rosemont

SMALLEST FOOTPRINT, LEAST WATER, HIGHEST YIELD

The information contained or referenced in this presentation is confidential and proprietary to FLSmidth and is protected by copyright or trade secret laws.

Rosemont Tailings

FILTRATION CYCLE TIMES

(Minutes)

Fill Empty Filter	0.57
Filtration to Solids Consolidation	3.07
Wash Solids	0.00
Cake Blow	4.00
Core Wash/Blow	0.50
Shake Cloth	0.50
Filter Cloth Wash & Purge	0.50
Open & Close Filter	1.50
Total Cycle Time	10.64

- ~ 8,500 tpd / filter
- ~ 350 tph / filter

One Source

~ 16 wt% cake moisture

P80 127 microns

M2020 in Operation

Copper Tailings Filtration Scenarios (Data From Testing)

Туре	Combined Fine and Coarse	Fine	
Solid Sg	2.73	2.73	
Feed Wt% Solids	50	50	
P80µm	204	30.5	
Mtph	10570	5913	
Cake Moisture Wt %	18.5	25.9	
Cake Thickness mm	32	32	
Filter Type	Recessed Chamber	Recessed Chamber	
Total Cycle Time (min)	9.4	10.63	
Filtration Rate kgh/m ² (lb/h/ft ²)	183 (38)	146 (30)	
Terminal Feed Pressure kg/cm ² (psi)	9 (140)	9 (140)	
Filter Size (ea) M2020 – Ch Qty/M ² /M ³	152/1018/19	152/1018/19	
Qty Filter Required	57	40	

Filter Press

Mongolian Copper Mine

- M1500 77 Chambers
- Copper Concentrate
- Slurry Sg: 1.86
- Cake Dryness: 8-9 wt%
- Through put: 1200 mtpd
- Availability: >90%
- Cycles Operated: >100,000

FLSmidth Automatic Filter Installation **FLSmidth**

FLSmidth Automatic Filter Installation **FLSmidth**

FLSmidth Automatic Filter Installation **FLSmidth**

Operating Costs

Coppe	er Tail	ings		
COST /	ANALY	SIS OUTPUT	COST A	NALYSIS INPUT DATA
			12	Number of filters
\$/MT	%	Cost Items	120	Chambers per filter
\$ 0.001	0.8%	Feed pump repairs	238	Cycles per day per filter
\$ 0.000	0.1%	Compressor repairs first year	365	Operation (Days/Year)
\$ 0.000	0.2%	Hydraulic system	106437	Dry solids production rate (MTPD)
\$ 0.000	0.2%	Cloth wash system	0.0%	Addition capacity (% of Design)
\$ 0.001	0.5%	Filter plates @ 2%/yr	50.00	Operator labor rate (\$/Hr)
\$ -	0.0%	Body plates @ 2%/yr	0.025	Operators per shift
\$ -	0.0%	Membranes @ 10%/yr	50.00	Maintenance labor rate (\$/Hr)
\$ 0.000	0.2%	Filter Spare Parts	0.010	Maintenance men per shift (different trades)
\$ 0.013	6.5%	Valves (15000 cycle life)	0.080	Power cost (\$/kW-Hr)
\$ 0.001	0.5%	Instrumentation	0.8	Energy consumption (kW-Hr/MT)
\$ 0.002	1.0%	Rebuild Shaker every 3 years	0.04	Water cost (\$/M³)
\$ 0.000	0.2%	Piping repairs from erosion	0.4	Dewatering time (Minutes)
\$ 0.001	0.7%	Maintenance labor	0.6	Compressed air rate (SCFM/FT ²)
\$ 0.000	0.1%	Operating labor	2228	Compressed air consumed (SCF/Cycle/Filter)
\$ 0.060	31.2%	Electric Power	2	Compressed air consumed (M3/MT/filter)
\$ 0.018	9.2%	Water	8668	Water consumption (GPM)
\$ 0.094	48.6%	Filter cloth @ 3000 cycle life	1968.5	Water consumption (M ³ /Hr)
\$ -	0.0%	Depreciation - Straight Line	5.30	Water consumption (M ³ /MT)
\$ 0.194		TOTAL	75	Filter cloth price, per chamber (\$)
			15	Filter cloth change time (Minutes)
			1260	Filter plate with cloth support price (\$)
	FL	SMIDTH	0	Membrane Body plate with cloth support price (\$)
			0	Replaceable Membrane price (\$)
				Capital investment (\$)
			20	Depreciation period (years)
				Salvage Value (\$)
			7	Valves Per Filter

The information contained or referenced in this presentation is confidential and proprietary to FLSmidth and is protected by copyright or trade secret laws.

Patent Pending Colossal AFP

Copper Tailings Filtration

FLS Dewatering Plant

FLSmidth Plant Layout

Fourteen (14) Automatic Pressure Filters Total Filter Area 12,000 Sq M

FLS Plant Layout w/14 Pressure Filters Filter Cake Collection System

Summary

FLS Filter Press Advantages:

- Largest Filter on the Market
- Lower Feed Eye = High Equipment Availability
- Heavy-duty = Less Down Time
- No diaphragms = Less maintenance
 - Inexpensive filter plates
- Short Cycles = High Throughput Per Area
 - Reduced number of filters
 - Low installed cost

One Source

Low Cost sourcing available

Summary

Filtered Tailings Advantages:

- Maximum Water Recovery
- Minimum Fresh Water Needed
- Lowest Environmental Impact
- Co-current Land Reclimation
- Lowest Risk Profile

One Source

Competitive Life Cycle Costs

FLSmidth Conveyor-Based Dry Tailings Stacking

Ted Wagner Global Product Manager – Mobile Conveying

